PHYSICAL REVIEW E, VOLUME 64, 036106
Topological properties of citation and metabolic networks
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Topological properties of “scale-free” networks are investigated by determining their spectral dimensions
ds, which reflect a diffusion process in the corresponding graphs. Data bases for citation networks and
metabolic networks together with simulation results from the growing network niddel. Barabasi and R.
Albert, Science286, 509 (1999] are probed. For completeness and comparisons lattice, random and small-
world models are also investigated. We find tbatis around 3 for citation and metabolic networks, which is
significantly different from the growing network model, for whicly is approximately 7.5. This signals a
substantial difference in network topology despite the observed similarities in vertex-order distributions. In
addition, the diffusion analysis indicates that the citation networks are treelike in structure, whereas the
metabolic networks contain many loops.
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[. INTRODUCTION small-world networks. As a consistency check, the dimen-
sion of regular lattice networks is also determined, which
There has recently been an upsurge of interest in the s@omes out as expected. One concludes that the spectral di-

called scale-free networks, where the vertex order, or degremension offers a powerful and additional measurg to Eq.

of connectivity per nodd, follows a power-law distribution (1) when it comes to characterizing network topologies. Fur-

thermore, the diffusion process underlying the extraction of

P(k)~k~” (1) ds hints upon differences in the citation and metabolic net-

work topologies; the former is treelike whereas the latter is

for k>(Kk). This is in contrast to the exponential suppressionfich in loop structures. _
expected from randomly wired networks. For a number of This paper is organ'lzed as follows: In Sec._ Il we describe
real-world networks like social networks, power grids, cita-the method for extracting the spectral dimension and Sec. Ill,
tion networks, the world wide web, and metabolic networks!V» @and V contain our investigations of the synthetic, citation,
[1], the scale-free behavior of EL) has been observed with and metabolic networks, respectively. A summary can be
exponentsy in the range 2—42], at least within an appro- found in Sec. VI.

priate range of orderf3]. The nature of all examples above

is that they originate from a growing process. Hence, it ap- Il. SPECTRAL DIMENSION

pears natural to develop a model of growing network, which

was indeed done if2]. Our method to probe the topological properties of an in-

The degree of connectivity is a measure of local proper_terac:tlon network, which is of more global nature than the

ties of the networks. Less attention has been payed to mo egree .Of connectiyity, s based_ upon the diffusion of a test
global properties for the above examples except for generfﬂart'de in the metric space defined by_ the gra_ph. _In a con-
features like network diameters. Global measures could bgnuous space with a fixed smooth metric, the diffusion equa-
important discriminants of network properties, in particular,tIon has the form
when it comes to narrow on potential underlying models.

In this paper, we gnalyze topological properties of n'et— iKg(e,eo,t)IAgKg(e,eo,t). 2
works, both of synthetic and real-world nature, by extracting dt
spectral dimensionds using a random walk procedure, from
which the return-to-origin probability is estimated. The focusHeret is the diffusion timeA is the Laplace operator in the
is on scale-free networks; citation networks, metabolic netmetricg, andKg(e, €q,t) is the probability density to diffuse
works, and the growing network modgl] are investigated. from € to € in time t. For smallt it is well known[5], that
For completeness and comparisons, we also extractighe the averageeturn probability has the following asymptotic
from simple three-dimensional regular lattice networks, ran€xpansion
dom networks, and small-world networf4].

We find that the citation and metabolic networks are quite Kg(0,01)~t 952 (©)
low dimensional withdg around 3, whereas for the growing
network modeldg is approximately 7.5. The latter turns out with

to be more in parity with what characterizes random and
Kg(Eyoao) = 5( E) (4)

*Email address: sven@thep.lu.se and where the powetr 9s’? reflects the dimension of the
TEmail address: carsten@thep.lu.se network.
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FIG. 1. Spectral dimensiorts as functions of
size for synthetic networks.
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In the spirit of these equations we extract thygectral compare with typical sizes of citation networks. In addition,
dimensionof the geometry defined by the interaction net-for all networks the average geodesic distafdiametef R
works considered in this work. To this end, we use the tranis computed.
sition matrix

Jij A. Lattice networks
Ci=— 5 . . . . .
4 © We use a simplequarelattices with dimensiom=3. For

_ these it is only possible to return to the origin after an even
with number of steps. TherefoR(t) =0 for oddt. In terms of the
transfer matrix eigenvectors this means that the symmetry of
©6) the square lattice leads to an eigenvector withexactly
—1. The corresponding eigenstate does not decay for targe
and yields destructive interference witl+ 1 eigenstate after
as the discrete version of the Laplace operatpr The num-  an odd number of steps. When extracting the spectral dimen-
ber k;, counts the number of links connected to vertexsionds from the data we therefore omit the odd time points.
i—the vertex order. In a simulation of the diffusion processAs can be seen from Fig. g is slightly above the expected
defined by the transition matrix, the probability to retufy, value 3, the dimension of the lattice. We have repeated this
aftert steps to the origid; is then measured. More precisely, experiment for a regular lattice including diagonals, hence
we choose a random subde};},i=1---N of vertices and allowing for closed loops with an odd number of steps. Al-
extract though local properties of the graph are considerably
N changed since the number of links emerging from each ver-
1 - tex is increased from@to 2d+d(d—1), we still extract the
(P(t)= N Z (8l Cijl 8. (M same value fodg within errors. This is a further justification
of omitting the data at odd time points for the square lattice
We then fit the resulting distribution to the asymptotic form@nd emphasizes that the spectral dimension is sensitive to
in Eq. (3). For larget, Eq. (3) is dominated by the eigenvec- 9lobal geometric aspects rather than to local details.
tor of C;; with eigenvaluex =1; the diffused particles reach
an equilibrium distribution, and E¢3) does not hold. Also, B. Small-world networks

for too smallt the assumption of a smooth metric is not e generate small-world networkd] from the lattice

justified. Our extraction procedure is therefore somewhahetwork described above by rewiring the edges in the regular
more elaborate to account for these effects. A sliding windoWattice to a randomly chosen vertex with probabiligy

method is used, where the window is chosen such as to mini= g 91, 0.05, and 0.2 respectively. This generates three sets

mize the standard deviation per point used in the fit. In otheps models for each system size. Not surprisingly, these net-
words, we fit to the part of the distribution, which is closest,yqrks end up with spectral dimensiofsee Fig. 1 in be-

to the functional form assumed in this procedure. Depending,een the regular lattice and the homogeneous random net-
uponds, window sizes might vary from a few time points to \yorks described next.

the entire range.

1 ifi andj are neighbors
YiZlo otherwise

C. Random networks
IIl. SYNTHETIC NETWORKS )
Homogeneous random networks are generated as directed

Next we extractdg for a few different types of synthetic networks, where each vertex has two inputs from other ver-
networks with sizes up to around 30 000 nodes in order tgices chosen at random. In the analysis the graph is consid-
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ered undirected by ignoring the orientation on the edges con- TABLE I. Largest cluster sizes in the SPIRES data base for the
necting the vertices. Furthermore, the analysis is focused oyears 1975-1989.
the largest cluster; the largest connected part of the resulting

graph. The spectral dimensiaty~8.5 (see Fig. 1is rela-  Year Largest cluster Year Largest cluster
tively large. This agrees qualitatively with the observation1975 20931 1983 32752
that a characteristic length scale, e.g., average distance b&;
. - . 76 22969 1984 34558
tween vertices along links, grows slowly with the volume. It
. . ] . . 1977 23936 1985 37020
also signals a large dimensionality for this type of graph. It is
. . . . . ..-1978 26038 1986 39962
interesting to note that again a distinct even-odd disparity 979 27055 1987 44392
emerges; the amplitude after an odd number of steps is ai— 2804 1 472
most zero. This indicates that the random network is domi+9€0 8045 988 90
nated by a treelike structure, the number of lo(gusleast of 1981 29309 1989 45549
982 31516 1975-1981 98104

odd length is negligibly small compared to the amplitude 1
obtained from backtracking the same path.

etry is dominated by two or more large clusters, which are

D. Growing network model . .
9 interconnected by only a few links.

In this model[2] one at each time stepadds a node, For the networks composed by several years we again
which connects tan existing nodesi) with a probabilityll;  observe a remarkable universality when comparing different
given by time periods. However, the distribution observed is consid-

erably different from the one-year distributions. The reason
.- kiB ®) presumably is a maturation of the citation networks leading
i I

to a tighter interconnection of the central cluster. In turn we
2 kjﬁ observe larger dimension as can be seen from the steeper
slope of the corresponding graph in Fig. 2. These issues for
the citation networks have been subject to further investiga-

wherek; is the connectivity of nodé and 8 is a parameter. tions [9].

In [2] the B=1 case was investigated both analytically in the
t—oo case and numerically for finite With the approxima-

tions involved one arrived ag=3 in the analytic approach V. METABOLIC NETWORK
and y=2.9x0.1 from simulations. For these networlgjs

approximately 6 for large system sizes. Another real-world interaction network is the metabolic

network found in living cells. In these networks, substrates
are treated as vertices, while chemical reactions connecting
IV. CITATION NETWORK substrates and educts are treated as directed links. Recently it

In a citation network the links and nodes correspond tohaS been demonstrated that for this type of networks the

the citations and the publicatiorisiting and cited, respec-

tively. We use the SPIRES data bad for our citation 10° —
network studies. This data base is limited to high energy o oo oguaton 78
physics publications but is not confined to articles that have fﬁ\ s —— Citation 75-81
been published in referred journals—citations to and from \f?\\{:;w—, N > Metabolic Network
conference reports are also present. From the data we cor X - s

-2

struct citation networks, which we treat as undirected, not_10°
fully connected graphs. By considering graphs generated by
publications in a certain year or time span and the cited pafé
pers(regardless of publication yeawe obtain a whole set of ¢
graphs. In these not fully connected graphs we focus on the§
largest connected cluster, the corresponding sizes are show 10
in Table I. When computing the connectivity distribution of

the nodes, we confirm the power-law distributipef. Eq.

(1)] already observed in citation networfg8| with y=2.7.

In Fig. 2 we plot the probability to return to the origin
aftert time steps for a few typical networks. It is interesting  10® : :
to note that, within errors, the return probability for the 76 1 10 100
and 79 networks are in very good agreement indicating uni- !
versal topological properties. This holds true also when com-  F|G. 2. The return probabilityP) as a function of time steps

paring all of the other one-year networks with the exceptioror citation networks with citing publications from a single years,
of the 75 and the 87 networksot shown, which cannot be 1976 and 1979, respectively, and for a six-year perip876—

fitted to Eq.(3). In these years the connectivity does not1981). Same quantity for the metabolic network. To maintain read-
probably generate a homogeneous metric, because the geoability, P for the metabolic network is multiplied with a factor 5.
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TABLE II. Largest cluster sizesN), average distancddiameters (R), and spectral dimensionsdd) for
different network models and real-world networks. Also indicated are whether the return probalfiites
substantial for even or odd steps.

Network N R ds Podd/Peven
Regular lattice(d=3) 32000 14.3 3.1 @1 with diagonal
Random network 32000 8.2 ~8.5 0
Small-world network p=0.01) 32000 5.9 3.6 0
Small-world network p=0.05) 32000 5.7 5.3 0
Small-world network p=0.2) 32000 53 6.8 0
Network growing model 32000 5.9 ~7 0
Citation network 20000-200000 6.3-5.6 2.8-4.2 0
Metabolic network 3800 3.1 2.8 1

connectivity distribution obeys a power-law behayicf. Eq.  ferent networks. Also shown here are the aver@g®desit
(1]; these networks are scale free with respect to the ordetlistancesR. For the regular lattice, the spectral dimension
distribution[1]. reproduces quite well the dimension of the underlying lattice.
Using data from the EMP Proje¢?], we constructed a Depending upon the probability to rewire a connectip, (
network including all reactions found in the database WithOU‘the small-world networks takes on values between the regu-
taking into account species and cell locations. As above, Wy |attice (p=0) and the random networkp& 1), which
neglect the orientation of the resulting graph in the analysispas the largest spectral dimension of all networks probed
The spectral dimension observed for this networkdis  here. One might have guessed that the growing network has
~2.8. This is a surprisingly small dimension taking into ac-an even larger dimension—the average distance for a net-
count the observatiofil] that the average distance betweenyork with the same size is smaller. However, in contrast to
vertices on this graph does not grow with the graph sizejhe geodesic distance, which only counts the shortest paths,
implying a very large, possibly infinite dimension. Also, the spectral dimension takes into account all possible paths
comparingds with the corresponding value for the growing of a given length. This means that only a few links, in ex-
model the scale-free network are analyzed above, the diffefreme cases even a single link, can considerably change the
ence is remarkable. This indicates that, although the metajeodesic distance, while the spectral dimension probes larger
bolic network and the scale-free network are similar on garts of the geometry and is therefore only slightly affected.
local (vertex ordey scale, the more global topological prop- For example, consider the behavior of the average distance
erties are very different. Another important difference ariseSor small-world networks with different probabilitieB to
from the observation that the return probability for odd pathrewire the underlying three-dimensional regular structure
lengths do not vanish. This means that the metabolic nef¢Taple I). Even forP=0.01 with the resulting geometry still
works consist of a very large number of closed loops. Thesssentially a regular three-dimensional lattice, the geodesic
graph has, in contrast to the random, growing model andjistance jumps to less than one-half of the value for the

citation networks,not a dominantly treelike structure. We regular case, while the spectral dimension is changed only
interprete this as an indication of a built-in stability of meta- moderately.

bolic networks with respect to small modifications. The spectral dimensions for the real-world networks, the
citation and metabolic networks, respectively, are strikingly
V1. SUMMARY AND OUTLOOK similar (see Fig. 3 in view of the much larger values ob-

served for the network growing model and the random net-
In Table Il the results fodg are summarized for the dif- work. We interprete this as a sign of universality in the ge-
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ometry of the real-world networks. The difference dky (2) In particular, we find thatlg are very similar for cita-
when comparing to that of the network growing model istion and metabolic networks. This may indicate a universal
remarkable. As mentioned in the Introduction, the latter rehehavior of real-world networks.

produces quite nicely the power-law scale-free vertex-order (3) With respect tods, the growing network model is
distribution observed for the real-world networl&. How-  significantly different from citation and metabolic networks.
ever, the difference imlg observed here indicates that the (4) As a by-product when extractinds, we find that
geometries of real-world networks are not fully described bygitation networks have treelike structures whereas the meta-
the network growing model. o _ bolic networks appear to contain many loops.

Given the similarity indg for the citation and metabolic In addition, lattice, random, and small-world networks
networks, one might ask how similar they really are? Anyere probed usings with results exhibiting internal consis-
important difference can be observed by investigating th@ency of the method.
probability P44 to return to the origin after an odd number When finishing the write up of this work, a paper with
of steps. For the citation network, as for all the syntheticgomewhat similar scope and philosophy but with employing

networks, one obtain®,qq~0. This is in contrast to the ejgenvalue analysis techniques instead was relddsid
metabolic network for whichPyqq~Peyen- The casePyqq

~0 indicates a treelike geometrical structure with only few

loops, where the return probability is dominateq by thg in- ACKNOWLEDGMENTS
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