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Topological properties of citation and metabolic networks

Sven Bilke* and Carsten Peterson†
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Topological properties of ‘‘scale-free’’ networks are investigated by determining their spectral dimensions
dS , which reflect a diffusion process in the corresponding graphs. Data bases for citation networks and
metabolic networks together with simulation results from the growing network model@A.-L. Barabasi and R.
Albert, Science286, 509 ~1999!# are probed. For completeness and comparisons lattice, random and small-
world models are also investigated. We find thatdS is around 3 for citation and metabolic networks, which is
significantly different from the growing network model, for whichdS is approximately 7.5. This signals a
substantial difference in network topology despite the observed similarities in vertex-order distributions. In
addition, the diffusion analysis indicates that the citation networks are treelike in structure, whereas the
metabolic networks contain many loops.
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I. INTRODUCTION

There has recently been an upsurge of interest in the
called scale-free networks, where the vertex order, or de
of connectivity per nodek, follows a power-law distribution

P~k!;k2g ~1!

for k.^k&. This is in contrast to the exponential suppress
expected from randomly wired networks. For a number
real-world networks like social networks, power grids, ci
tion networks, the world wide web, and metabolic netwo
@1#, the scale-free behavior of Eq.~1! has been observed wit
exponentsg in the range 2–4@2#, at least within an appro
priate range of orders@3#. The nature of all examples abov
is that they originate from a growing process. Hence, it
pears natural to develop a model of growing network, wh
was indeed done in@2#.

The degree of connectivity is a measure of local prop
ties of the networks. Less attention has been payed to m
global properties for the above examples except for gen
features like network diameters. Global measures could
important discriminants of network properties, in particul
when it comes to narrow on potential underlying models

In this paper, we analyze topological properties of n
works, both of synthetic and real-world nature, by extract
spectral dimensionsdS using a random walk procedure, from
which the return-to-origin probability is estimated. The foc
is on scale-free networks; citation networks, metabolic n
works, and the growing network model@2# are investigated.
For completeness and comparisons, we also extract thdS
from simple three-dimensional regular lattice networks, r
dom networks, and small-world networks@4#.

We find that the citation and metabolic networks are qu
low dimensional withdS around 3, whereas for the growin
network modeldS is approximately 7.5. The latter turns o
to be more in parity with what characterizes random a
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small-world networks. As a consistency check, the dim
sion of regular lattice networks is also determined, wh
comes out as expected. One concludes that the spectra
mension offers a powerful and additional measure tog in Eq.
~1! when it comes to characterizing network topologies. F
thermore, the diffusion process underlying the extraction
dS hints upon differences in the citation and metabolic n
work topologies; the former is treelike whereas the latter
rich in loop structures.

This paper is organized as follows: In Sec. II we descr
the method for extracting the spectral dimension and Sec.
IV, and V contain our investigations of the synthetic, citatio
and metabolic networks, respectively. A summary can
found in Sec. VI.

II. SPECTRAL DIMENSION

Our method to probe the topological properties of an
teraction network, which is of more global nature than t
degree of connectivity, is based upon the diffusion of a t
particle in the metric space defined by the graph. In a c
tinuous space with a fixed smooth metric, the diffusion eq
tion has the form

]

]t
Kg~e,e0 ,t !5DgKg~e,e0 ,t !. ~2!

Heret is the diffusion time,Dg is the Laplace operator in th
metricg, andKg(e,e0 ,t) is the probability density to diffuse
from e0 to e in time t. For smallt it is well known @5#, that
the averagereturn probability has the following asymptotic
expansion

Kg~0,0,t !;t2dS/2 ~3!

with

Kg~e,0,0!5d~e! ~4!

and where the powert2dS /2 reflects the dimension of the
network.
©2001 The American Physical Society06-1
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FIG. 1. Spectral dimensionsdS as functions of
size for synthetic networks.
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In the spirit of these equations we extract thespectral
dimensionof the geometry defined by the interaction ne
works considered in this work. To this end, we use the tr
sition matrix

Ci j 5
Ji j

ki
, ~5!

with

Ji j 5H 1 if i and j are neighbors

0 otherwise
~6!

as the discrete version of the Laplace operatorDg . The num-
ber ki , counts the number of links connected to vert
i—the vertex order. In a simulation of the diffusion proce
defined by the transition matrix, the probability to return,P,
after t steps to the origind i is then measured. More precisel
we choose a random subset$d i%,i 51•••N of vertices and
extract

^P~ t !&5
1

N (
i

N

^d i uCi , j
T ud i&. ~7!

We then fit the resulting distribution to the asymptotic for
in Eq. ~3!. For larget, Eq. ~3! is dominated by the eigenvec
tor of Ci j with eigenvaluel51; the diffused particles reac
an equilibrium distribution, and Eq.~3! does not hold. Also,
for too small t the assumption of a smooth metric is n
justified. Our extraction procedure is therefore somew
more elaborate to account for these effects. A sliding wind
method is used, where the window is chosen such as to m
mize the standard deviation per point used in the fit. In ot
words, we fit to the part of the distribution, which is close
to the functional form assumed in this procedure. Depend
upondS , window sizes might vary from a few time points t
the entire range.

III. SYNTHETIC NETWORKS

Next we extractdS for a few different types of synthetic
networks with sizes up to around 30 000 nodes in orde
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compare with typical sizes of citation networks. In additio
for all networks the average geodesic distance~diameter! R
is computed.

A. Lattice networks

We use a simplesquarelattices with dimensiond53. For
these it is only possible to return to the origin after an ev
number of steps. ThereforeP(t)50 for oddt. In terms of the
transfer matrix eigenvectors this means that the symmetr
the square lattice leads to an eigenvector withl exactly
21. The corresponding eigenstate does not decay for lart
and yields destructive interference withl51 eigenstate after
an odd number of steps. When extracting the spectral dim
siondS from the data we therefore omit the odd time poin
As can be seen from Fig. 1,dS is slightly above the expecte
value 3, the dimension of the lattice. We have repeated
experiment for a regular lattice including diagonals, hen
allowing for closed loops with an odd number of steps. A
though local properties of the graph are considera
changed since the number of links emerging from each v
tex is increased from 2d to 2d1d(d21), we still extract the
same value fordS within errors. This is a further justification
of omitting the data at odd time points for the square latt
and emphasizes that the spectral dimension is sensitiv
global geometric aspects rather than to local details.

B. Small-world networks

We generate small-world networks@4# from the lattice
network described above by rewiring the edges in the reg
lattice to a randomly chosen vertex with probabilityP
50.01, 0.05, and 0.2 respectively. This generates three
of models for each system size. Not surprisingly, these n
works end up with spectral dimensions~see Fig. 1! in be-
tween the regular lattice and the homogeneous random
works described next.

C. Random networks

Homogeneous random networks are generated as dire
networks, where each vertex has two inputs from other v
tices chosen at random. In the analysis the graph is con
6-2
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TOPOLOGICAL PROPERTIES OF CITATION AND . . . PHYSICAL REVIEW E64 036106
ered undirected by ignoring the orientation on the edges c
necting the vertices. Furthermore, the analysis is focused
the largest cluster; the largest connected part of the resu
graph. The spectral dimensiondS'8.5 ~see Fig. 1! is rela-
tively large. This agrees qualitatively with the observati
that a characteristic length scale, e.g., average distance
tween vertices along links, grows slowly with the volume.
also signals a large dimensionality for this type of graph. I
interesting to note that again a distinct even-odd dispa
emerges; the amplitude after an odd number of steps is
most zero. This indicates that the random network is do
nated by a treelike structure, the number of loops~at least of
odd length! is negligibly small compared to the amplitud
obtained from backtracking the same path.

D. Growing network model

In this model @2# one at each time stept adds a node,
which connects tom existing nodes~i! with a probabilityP i
given by

P i5
ki

b

(
j

kj
b

, ~8!

whereki is the connectivity of nodei andb is a parameter.
In @2# theb51 case was investigated both analytically in t
t→` case and numerically for finitet. With the approxima-
tions involved one arrived atg53 in the analytic approach
andg52.960.1 from simulations. For these networks,R is
approximately 6 for large system sizes.

IV. CITATION NETWORK

In a citation network the links and nodes correspond
the citations and the publications~citing and cited!, respec-
tively. We use the SPIRES data base@6# for our citation
network studies. This data base is limited to high ene
physics publications but is not confined to articles that h
been published in referred journals—citations to and fr
conference reports are also present. From the data we
struct citation networks, which we treat as undirected,
fully connected graphs. By considering graphs generated
publications in a certain year or time span and the cited
pers~regardless of publication year! we obtain a whole set o
graphs. In these not fully connected graphs we focus on
largest connected cluster, the corresponding sizes are sh
in Table I. When computing the connectivity distribution
the nodes, we confirm the power-law distribution@cf. Eq.
~1!# already observed in citation networks@8# with g52.7.

In Fig. 2 we plot the probability to return to the origi
after t time steps for a few typical networks. It is interestin
to note that, within errors, the return probability for the
and 79 networks are in very good agreement indicating u
versal topological properties. This holds true also when co
paring all of the other one-year networks with the except
of the 75 and the 87 networks~not shown!, which cannot be
fitted to Eq. ~3!. In these years the connectivity does n
probably generate a homogeneous metric, because the g
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etry is dominated by two or more large clusters, which a
interconnected by only a few links.

For the networks composed by several years we ag
observe a remarkable universality when comparing differ
time periods. However, the distribution observed is cons
erably different from the one-year distributions. The reas
presumably is a maturation of the citation networks lead
to a tighter interconnection of the central cluster. In turn
observe larger dimension as can be seen from the ste
slope of the corresponding graph in Fig. 2. These issues
the citation networks have been subject to further investi
tions @9#.

V. METABOLIC NETWORK

Another real-world interaction network is the metabo
network found in living cells. In these networks, substra
are treated as vertices, while chemical reactions connec
substrates and educts are treated as directed links. Recen
has been demonstrated that for this type of networks

TABLE I. Largest cluster sizes in the SPIRES data base for
years 1975–1989.

Year Largest cluster Year Largest cluster

1975 20931 1983 32752
1976 22969 1984 34558
1977 23936 1985 37020
1978 26038 1986 39962
1979 27055 1987 44392
1980 28045 1988 47290
1981 29309 1989 45549
1982 31516 1975–1981 98104

FIG. 2. The return probability~P! as a function of time stepst
for citation networks with citing publications from a single year
1976 and 1979, respectively, and for a six-year period~1976–
1981!. Same quantity for the metabolic network. To maintain rea
ability, P for the metabolic network is multiplied with a factor 5.
6-3
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TABLE II. Largest cluster sizes (N), average distances~diameters! (R), and spectral dimensions (dS) for
different network models and real-world networks. Also indicated are whether the return probabilities~P! are
substantial for even or odd steps.

Network N R dS Podd /Peven

Regular lattice~d53! 32000 14.3 3.1 0~1 with diagonal!
Random network 32000 8.2 '8.5 0
Small-world network (p50.01) 32000 5.9 3.6 0
Small-world network (p50.05) 32000 5.7 5.3 0
Small-world network (p50.2) 32000 5.3 6.8 0
Network growing model 32000 5.9 '7 0
Citation network 20000–200000 6.3–5.6 2.8–4.2 0
Metabolic network 3800 3.1 2.8 1
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connectivity distribution obeys a power-law behavior@cf. Eq.
~1!#; these networks are scale free with respect to the o
distribution @1#.

Using data from the EMP Project@7#, we constructed a
network including all reactions found in the database with
taking into account species and cell locations. As above,
neglect the orientation of the resulting graph in the analy
The spectral dimension observed for this network isdS
'2.8. This is a surprisingly small dimension taking into a
count the observation@1# that the average distance betwe
vertices on this graph does not grow with the graph s
implying a very large, possibly infinite dimension. Als
comparingdS with the corresponding value for the growin
model the scale-free network are analyzed above, the di
ence is remarkable. This indicates that, although the m
bolic network and the scale-free network are similar on
local ~vertex order! scale, the more global topological prop
erties are very different. Another important difference aris
from the observation that the return probability for odd pa
lengths do not vanish. This means that the metabolic
works consist of a very large number of closed loops. T
graph has, in contrast to the random, growing model
citation networks,not a dominantly treelike structure. W
interprete this as an indication of a built-in stability of met
bolic networks with respect to small modifications.

VI. SUMMARY AND OUTLOOK

In Table II the results fordS are summarized for the dif
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ferent networks. Also shown here are the average~geodesic!
distancesR. For the regular lattice, the spectral dimensi
reproduces quite well the dimension of the underlying latti
Depending upon the probability to rewire a connection (p),
the small-world networks takes on values between the re
lar lattice (p50) and the random network (p51), which
has the largest spectral dimension of all networks pro
here. One might have guessed that the growing network
an even larger dimension—the average distance for a
work with the same size is smaller. However, in contrast
the geodesic distance, which only counts the shortest pa
the spectral dimension takes into account all possible p
of a given length. This means that only a few links, in e
treme cases even a single link, can considerably change
geodesic distance, while the spectral dimension probes la
parts of the geometry and is therefore only slightly affect
For example, consider the behavior of the average dista
for small-world networks with different probabilitiesP to
rewire the underlying three-dimensional regular struct
~Table II!. Even forP50.01 with the resulting geometry stil
essentially a regular three-dimensional lattice, the geod
distance jumps to less than one-half of the value for
regular case, while the spectral dimension is changed o
moderately.

The spectral dimensions for the real-world networks,
citation and metabolic networks, respectively, are strikin
similar ~see Fig. 3! in view of the much larger values ob
served for the network growing model and the random n
work. We interprete this as a sign of universality in the g
d

FIG. 3. The spectral dimensiondS for the ci-

tation networks for papers citing in one year an
over six-year periods. For comparison,dS for the
metabolic network is also shown.
6-4
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TOPOLOGICAL PROPERTIES OF CITATION AND . . . PHYSICAL REVIEW E64 036106
ometry of the real-world networks. The difference indS
when comparing to that of the network growing model
remarkable. As mentioned in the Introduction, the latter
produces quite nicely the power-law scale-free vertex-or
distribution observed for the real-world networks@2#. How-
ever, the difference indS observed here indicates that th
geometries of real-world networks are not fully described
the network growing model.

Given the similarity indS for the citation and metabolic
networks, one might ask how similar they really are?
important difference can be observed by investigating
probability Podd to return to the origin after an odd numb
of steps. For the citation network, as for all the synthe
networks, one obtainsPodd'0. This is in contrast to the
metabolic network for whichPodd'Peven . The casePodd
'0 indicates a treelike geometrical structure with only fe
loops, where the return probability is dominated by the
verse of the forward paths. The regular lattice without dia
nals seems to be a counter example. The return probab
Podd is exactly zero, but the geometry is certainly not tre
like and there exist many nonbacktracking loops. Howev
this lattice is a special case since its symmetry only allo
for even step nonbacktracking loops. It is extremely unlik
that such an effect plays a role in any of the other lattice

Our results can be summarized as follows.
~1! The spectral dimensiondS , which reflects a diffusion

process on networks, offers quite some promise in catego
ing networks beyond what emerges from studying vert
order distributions.
-

y,
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~2! In particular, we find thatdS are very similar for cita-
tion and metabolic networks. This may indicate a univer
behavior of real-world networks.

~3! With respect todS , the growing network model is
significantly different from citation and metabolic network

~4! As a by-product when extractingdS , we find that
citation networks have treelike structures whereas the m
bolic networks appear to contain many loops.

In addition, lattice, random, and small-world networ
were probed usingdS with results exhibiting internal consis
tency of the method.

When finishing the write up of this work, a paper wit
somewhat similar scope and philosophy but with employ
eigenvalue analysis techniques instead was released@10#.
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